Analysis of a dynamic assignment of impatient customers to parallel queues

نویسنده

  • Ali Movaghar-Rahimabadi
چکیده

Consider a number of parallel queues, each with an arbitrary capacity and multiple identical exponential servers. The service discipline in each queue is firstcome-first-served (FCFS). Customers arrive according to a state-dependent Poisson process. Upon arrival, a customer joins a queue according to a state-dependent policy or leaves the system immediately if it is full. No jockeying among queues is allowed. An incoming customer to a parallel queue has a general patience time dependent on that queue after which he/she must depart from the system immediately. Parallel queues are of two types: type 1, wherein the impatience mechanism acts on the waiting time; or type 2, a single server queue wherein the impatience acts on the sojourn time. We prove a key result, namely, that the state process of the system in the long run converges in distribution to a well-defined Markov process. Closed-form solutions for the probability density function of the virtual waiting time of a queue of type 1 or the offered sojourn time of a queue of type 2 in a given state are derived which are, interestingly, found to depend only on the local state of the queue. The efficacy of the approach is illustrated by some numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unreliable bulk retrial queues with delayed repairs and modified vacation policy

The present investigation deals with the bulk arrival M/G/1 retrial queue with impatient customers and modified vacation policy. The incoming customers join the virtual pool of customers called orbit if they find the server being busy, on vacation or in broken down state otherwise the service of the customer at the head of the batch is started by the server. The service is provided in k</em...

متن کامل

A Mathematical Analysis on Linkage of a Network of Queues with Two Machines in a Flow Shop including Transportation Time

This paper represents linkage network of queues consisting of biserial and parallel servers linked to a common server in series with a flowshop scheduling system consisting of two machines. The significant transportation time of the jobs from one machine to another is also considered. Further, the completion time of jobs/customers (waiting time + service time) in the queue network is the set...

متن کامل

Waiting Time Analysis of Multi-class Queues with Impatient Customers

In this paper, we study three delay systems where different classes of impatient customers arrive according to independent Poisson processes. In the first system, a single server receives two classes of customers with general service time requirements, and follows a non-preemptive priority policy in serving them. Both classes of customers abandon the system when their exponentially distributed ...

متن کامل

On the Assignment of Customers to Parallel Queues

This paper considers routing to parallel queues in which each queue has its own single server, and service times are exponential with nonidentical parameters. We give conditions on the cost function such that the optimal policy assigns customers to a faster queue when that server has a shorter queue. The queues may have finite buffers, and the arrival process can be controlled and can depend on...

متن کامل

The truncated normal distribution: Applications to queues with impatient customers

Motivated by heavy traffic approximations for single server queueswith abandonment, we provide an exact expression for the moments of the truncated normal distribution using Stein’s lemma. Consequently, our moment expressions provide insight into the steady state skewness and kurtosis dynamics of single server queues with impatient customers. Moreover, based on the truncated normal distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Queueing Syst.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2011